Search results

1 – 4 of 4
Article
Publication date: 23 July 2018

Michał T. Lewandowski, Paweł Płuszka and Jacek Pozorski

This paper aims to assess the sensitivity of numerical simulation results of turbulent reactive flow to the formulation of inlet boundary conditions. The analysis concerns the…

Abstract

Purpose

This paper aims to assess the sensitivity of numerical simulation results of turbulent reactive flow to the formulation of inlet boundary conditions. The analysis concerns the profiles of the mean velocity the turbulence kinetic energy k and its dissipation rate ϵ. It is intended to provide guidance to the determination of inlet conditions when only global flow data are available. This situation can be met both in simple laboratory experiments and in industrial full-scale applications, when measurements are either incomplete or infeasible, resulting in lack of detailed inlet data.

Design/methodology/approach

Two turbulence–chemistry interaction models were studied: eddy dissipation concept and partially stirred reactor. Three different velocity profiles and related turbulence statistics were applied to present feasible scenarios and their consequences. Simulations with the most appropriate inlet data were accompanied with profiles of turbulent quantities obtained with a proposed method. This method was contrasted to other approaches popular in the literature: the pre-inlet pipe and the separate cold flow simulations of a burner. The methodology was validated on two laboratory-scale jet flames: Delft Jet-in-Hot-Coflow and Sandia CHN B. The simulations were carried out with open source code OpenFOAM.

Findings

The proposed relations for turbulence kinetic energy and its dissipation rate at the inlet are found to provide results comparable to those obtained with the use of experimental data as inlet boundary conditions. Moreover, from a certain location downstream the jet, weakly dependent on the Reynolds number, the influence of inlet conditions on flow statistics was found to be negligible.

Originality/value

This work reveals the consequences of the use of rather crude assumptions made for inlet boundary conditions. Proposed formulas for the profiles for k and epsilon are attractive alternatives to other approaches aiming to determine the inlet boundary conditions for turbulent jet flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 April 2014

Michał Lewandowski and Janusz Walczak

A highly accurate method of current spectrum estimation of a nonlinear load is presented in this paper. Using the method makes it possible to evaluate the current injection…

Abstract

Purpose

A highly accurate method of current spectrum estimation of a nonlinear load is presented in this paper. Using the method makes it possible to evaluate the current injection frequency domain model of a nonlinear load from previously recorded time domain voltage and current waveforms. The paper aims to discuss these issues.

Design/methodology/approach

The method incorporates the idea of coherent resampling (resampling synchronously with the base frequency of the signal) followed by the discrete Fourier transform (DFT) to obtain the frequency spectrum. When DFT is applied to a synchronously resampled signal, the spectrum is free of negative DFT effects (the spectrum leakage, for example). However, to resample the signal correctly it is necessary to know its base frequency with high accuracy. To estimate the base frequency, the first-order Prony's frequency estimator was used.

Findings

It has been shown that the presented method may lead to superior results in comparison with window interpolated Fourier transform and time-domain quasi-synchronous sampling algorithms.

Research limitations/implications

The method was designed for steady-state analysis in the frequency domain. The voltage and current waveforms across load terminals should be recorded simultaneously to allow correct voltage/current phase shift estimation.

Practical implications

The proposed method can be used in case when the frequency domain model of a nonlinear load is desired and the voltage and current waveforms recorded across load terminals are available. The method leads to correct results even when the voltage/current sampling frequency has not been synchronized with the base frequency of the signal. It can be used for off-line frequency model estimation as well as in real-time DSP systems to restore coherent sampling of the analysed signals.

Originality/value

The method proposed in the paper allows to estimate a nonlinear load frequency domain model from current and voltage waveforms with higher accuracy than other competitive methods, while at the same time its simplicity and computational efficiency is retained.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 November 2012

George K. Stylios

Examines the seventeenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1113

Abstract

Examines the seventeenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 24 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 November 2018

Nataraj Poomathi, Sunpreet Singh, Chander Prakash, Rajkumar V. Patil, P.T. Perumal, Veluchamy Amutha Barathi, Kalpattu K. Balasubramanian, Seeram Ramakrishna and N.U. Maheshwari

Bioprinting is a promising technology, which has gained a recent attention, for application in all aspects of human life and has specific advantages in different areas of…

Abstract

Purpose

Bioprinting is a promising technology, which has gained a recent attention, for application in all aspects of human life and has specific advantages in different areas of medicines, especially in ophthalmology. The three-dimensional (3D) printing tools have been widely used in different applications, from surgical planning procedures to 3D models for certain highly delicate organs (such as: eye and heart). The purpose of this paper is to review the dedicated research efforts that so far have been made to highlight applications of 3D printing in the field of ophthalmology.

Design/methodology/approach

In this paper, the state-of-the-art review has been summarized for bioprinters, biomaterials and methodologies adopted to cure eye diseases. This paper starts with fundamental discussions and gradually leads toward the summary and future trends by covering almost all the research insights. For better understanding of the readers, various tables and figures have also been incorporated.

Findings

The usages of bioprinted surgical models have shown to be helpful in shortening the time of operation and decreasing the risk of donor, and hence, it could boost certain surgical effects. This demonstrates the wide use of bioprinting to design more precise biological research models for research in broader range of applications such as in generating blood vessels and cardiac tissue. Although bioprinting has not created a significant impact in ophthalmology, in recent times, these technologies could be helpful in treating several ocular disorders in the near future.

Originality/value

This review work emphasizes the understanding of 3D printing technologies, in the light of which these can be applied in ophthalmology to achieve successful treatment of eye diseases.

Details

Rapid Prototyping Journal, vol. 25 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 4 of 4